z-logo
Premium
Structure and development of the larval visual system in embryos of Lytta viridana leconte (coleoptera, meloidae)
Author(s) -
Heming B. S.
Publication year - 1982
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051720104
Subject(s) - biology , primordium , anatomy , invagination , antennal lobe , lobe , imaginal disc , lamina , neuropil , optic cup (embryology) , optic nerve , morphogenesis , retina , insect , neuroscience , central nervous system , botany , genetics , gene , mutant , eye development , phenotype
At hatching (252–264 hr. at 25 ± 0.5°C), the visual system in larvae of Lytta viridana consists of paired stemmata, stemmatal nerves, optic neuropiles, and inner and outer imaginal optic lobe anlagen. It originates between 64 and 72 hr. with invagination of an optic lobe primordium in the side of each protocephalic lobe. These primordia later differentiate into protocerebral ganglion cells and the imaginal optic lobe anlagen. Each stemma arises at 72 hr. from epidermis below and behind the optic lobe invagination and subsequently becomes cupshaped, closes over, and differentiates. At hatching, it consists of a planoconvex corneal lens, a corneagenous layer, and an everse retina of numerous, pigmented retinular cells, each with a terminal rhabdomere. Between 96 and 104 hr, proximal ends of the retinular cells grow posteromedially into a transverse, horizontal fold in the posterior wall of each optic lobe invagination and along its length to the protocerebral neuropile, which they contact by 112 hr. As the brain withdraws posteriorly within the head, these axons elongate correspondingly. Sheath cells of stemmata and stemmatal nerves descend either from protocerebral perineurium or the optic lobe primordia. Structure and development of the larval visual system in L. viridana are compared with those of other insects and its various components are shown to be homologous throughout the Insecta. However, the stemmata of this insect more closely resemble the atypical imaginal eyes of male scale insects than the photoreceptors of other holometabolous larvae–a similarity arising through convergence.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here