Premium
Autonomic innervation of salivary glands in the armadillo, anteater, and sloth (Edentata)
Author(s) -
Rossoni Robson B.,
Machado Conceição R. S.,
Machado Angelo B. M.
Publication year - 1981
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051680204
Subject(s) - armadillo , biology , cholinergic , salivary gland , anatomy , adrenergic , endocrinology , nasal glands , medicine , biochemistry , receptor , mucous membrane of nose , microbiology and biotechnology
The intraglandular distribution of adrenergic and cholinergic nerve fibers was studied histochemically in the parotid, mandibular, and sublingual glands of six species of edentates belonging to the three families that comprise the order; namely, the Dasypodidae (armadillos), the Myrmecophagidae (anteaters), and the Bradipodidae (sloths). The following histochemical techniques were used: (a) acetylcholinesterase reaction for the demonstration of cholinergic fibers; (b) formaldehyde‐ and glyoxylic acid‐induced fluorescence for the demonstration of adrenergic fibers. In addition, norepinephrine (NE) was assayed fluorimetrically in the mandibular and parotid glands of the armadillo. A network of acetylcholinesterase‐positive nerve fibers surrounds the intra‐ and interlobular ducts and endpieces of all glands; it is of low density in the mandibular and sublingual gland of the sloth, of high density in the sublingual gland of the anteater and of moderate density in the remaining glands. A vascular cholinergic innervation occurs in all salivary glands. Although present around the vessels, adrenergic new fibers were virtually absent from the parenchyma of all glands, even after in vitro incubation of glandular tissue with NE, or after administration of NE to armadillos previously treated with a monoamine oxidase (MAO) inhibitor. Consistent with this fact, the amount of NE present in the parotid and mandibular gland of the armadillo was extremely low. These findings may indicate that the salivary secretion in the edentates is regulated by the parasympathetic rather than by the sympathetic nervous system.