Premium
The body wall of cheilostome Bryozoa. II. Interzoidal communication organs
Author(s) -
Banta William C.
Publication year - 1969
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051290203
Subject(s) - bryozoa , anatomy , biology , apposition , invagination , cuticle (hair) , process (computing) , botany , taxonomy (biology) , computer science , operating system
Communication organs (septulae) of cheilostome Bryozoa are more complex than perviously believed. Annuli, present only in lateral septulae, are thickenings of the intercalary cuticle. Each communication pore is filled with a ring‐like “pore cincture,” through which project a pair of “special cells.” Septulae of all species examined (10 species from 6 families) can be considered modifications of the same structure, varying only in degree of calcification and number of communication pores. External walls, including basal and lateral walls, are best defined as reinforcements of the ectocyst, which is derived by intussusception from the primary cuticle of the ancestrula. The lateral ectocyst must be considered a double layer formed by invagination of the distal ectocyst. Internal walls are developed by apposition from inner parts of the ectocyst; they include pore plates and transverse walls. External walls are laid down first. Lenticular masses develop unilaterally on the uncalcified lateral ectocyst; the pore plate develops by apposition from the interior part of the ectocyst. Depending on the species, the pore plate may or may not be calcified at the time of its formation. Communication pores are formed when the developing pore plate abuts against embryonic special cells. The septular ectocyst never calcifies; it breaks down when the pore plate is complete. Some ascophorans undergo “reparative budding,” in which new zoids are formed within dead zoecia. Hollow, ectocyst‐covered buds lined with blastemic epithelia are produced from septulae of live zoids; adjacent buds may fuse. These findings are consistent with the view that lateral septulae are aborted zoids and that pore plates represent transverse walls.