Premium
Ultrastructural and functional changes during metamorphosis of a proleg muscle and its innervation in Galleria mellonella (L.) (Lepidoptera: Pyralididae)
Author(s) -
Randall Winnifred C.,
Pipa Rudolph L.
Publication year - 1969
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051280204
Subject(s) - biology , myofilament , sarcomere , anatomy , ultrastructure , axolemma , myocyte , microbiology and biotechnology , neuroscience , myelin , central nervous system
Structural and functional changes have been correlated during metamorphic degeneration of a single muscle fiber, the plantar retractor of G. mellonella , its axon, and their junctions to determine which features persist as long as muscle contractility. Changes commence simultaneously in muscle and nerve near cuticular attachments, and spread towards the center. Alterations associated with the muscle, including appearance of collapsed tracheoles and mitochondria with dense bodies, begin late in the last larval instar. Within 12 hours after pupal ecdysis some tracheolar withdrawal occurs, sarcoplasmic reticulum becomes reduced, and many mitochondria have dense bodies, dense membranes, or are enlarged. By 17–19 hours primary myofilaments and striations begin to disappear, microtubules and autophagic vacuole‐like bodies appear, and phagocytes invade the muscle. It remains partially contractile upon electrically stimulating its nerve, the ventral nerve, until these changes spread throughout the fiber. Neuromuscular junction changes, including appearance of dense mitochondria and isolation bodies, begin late in the last larval instar. Junctions become fewer, and none remain in those muscle areas where tracheoles, sarcoplasmic reticulum, and primary myofilaments have disappeared. Preliminary studies on nerve discharge activity to the muscle suggest that nerve silence occurs at approximately the time when the muscle loses all contractility. In some axons isolation bodies appear and neurotubules are lost, other axons remain unchanged, and new ones develop later in the pupal state. Phagocytes invade the neural lamella and it disappears in the late pupa, but it reappears in the adult. The adult ventral nerve has over three times more axons and a thinner layer of glial cells than the larval nerve.