z-logo
Premium
On the mechanism of respiration in the bullfrog, Rana catesbeiana : A reassessment
Author(s) -
De Jongh H. J.,
Gans Carl
Publication year - 1969
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051270302
Subject(s) - bullfrog , respiration , anatomy , biology , buccal administration , ventilation (architecture) , respiratory system , anesthesia , medicine , endocrinology , mechanical engineering , bioinformatics , engineering
The mechanism of respiration in the bullfrog has been analyzed by means of pressure recordings from the buccal cavity, the lungs and the abdominal cavity, by cinematography and cinefluorography, and by electromyography of buccal, laryngeal and abdominal muscles. Gas flow was investigated by putting frogs in atmospheres of changing argon and nitrogen content and monitoring the concentration of the nostril efflux. Three kinds of cyclical phenomena were found. (1) Oscillatory cycles consist of rhythmical raising and lowering of the floor of the mouth, with open nares. They have a definite respiratory function in introducing fresh air into the buccal cavity. (2) Ventilatory cycles involve opening and closing of the glottis and nares and renewal of a portion of the pulmonary gas. More muscles are involved and the pattern of muscular activity is more complex than in the oscillatory cycles. (3) Inflation cycles consist of a series of ventilation cycles, interrupted by an apneic pause. The intensity of the ventilatory cycles increases before this pause and decreases immediately thereafter. This results in a stepwise increase in pulmonary pressure, to a plateau (coincident with the pause) followed by a sudden or stepwise decrease. The respiratory mechanism depends on the activity of a buccal force pump, which determines pulmonary pressure whose level is always slightly less than the peak pressure values of the ventilation cycles. The elevated pulmonary pressure is responsible for the expulsion of pulmonary gas during the second phase of the next ventilation cycle. This pressure is maintained by the elastic fibers (and the smooth masculature) of the lungs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here