Premium
Development of novel radionuclides for medical applications
Author(s) -
Qaim Syed M.,
Spahn Ingo
Publication year - 2018
Publication title -
journal of labelled compounds and radiopharmaceuticals
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.432
H-Index - 47
eISSN - 1099-1344
pISSN - 0362-4803
DOI - 10.1002/jlcr.3578
Subject(s) - radionuclide , chemistry , radiochemistry , cyclotron , nuclear physics , range (aeronautics) , nuclear engineering , medical physics , electron , physics , materials science , engineering , composite material
Medical radionuclide production technology is well established. There is, however, a constant need for further development of radionuclides. The present efforts are mainly devoted to nonstandard positron emitters (eg, 64 Cu, 86 Y, 124 I, and 73 Se) and novel therapeutic radionuclides emitting low‐range β − particles (eg, 67 Cu and 186 Re), conversion or Auger electrons (eg, 117m Sn and 77 Br), and α particles (eg, 225 Ac). A brief account of various aspects of development work (ie, nuclear data, targetry, chemical processing, and quality control) is given. For each radionuclide under consideration, the status of technology for clinical scale production is discussed. The increasing need of intermediate‐energy multiple‐particle accelerating cyclotrons is pointed out.