Premium
Inborn errors of enzymes in glutamate metabolism
Author(s) -
Rumping Lynne,
Vringer Esmee,
Houwen Roderick H. J.,
Hasselt Peter M.,
Jans Judith J. M.,
VerhoevenDuif Nanda M.
Publication year - 2020
Publication title -
journal of inherited metabolic disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.462
H-Index - 102
eISSN - 1573-2665
pISSN - 0141-8955
DOI - 10.1002/jimd.12180
Subject(s) - glutamine , urea cycle , glutamate receptor , biology , metabolism , phenotype , glutamine synthetase , biochemistry , glutaminase , metabolome , amino acid , gene , metabolite , receptor , arginine
Abstract Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter‐conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter‐conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however—with the exception of urea cycle defects—abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism—rather than individual glutamate and glutamine levels—the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.