Premium
The effect of intramolecular‐hydrogen bonds in the synthesis of novel imidates from a 13‐membered dioxadithia crown ether diester
Author(s) -
Karaböcek Serdar,
Degirmencioglu Ismail,
Karaböcek Nevin,
Er Mustafa,
Serbest Kerim
Publication year - 2003
Publication title -
journal of heterocyclic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.321
H-Index - 59
eISSN - 1943-5193
pISSN - 0022-152X
DOI - 10.1002/jhet.5570400412
Subject(s) - chemistry , intramolecular force , hydrogen bond , standard enthalpy of formation , crown ether , diamine , ether , elemental analysis , medicinal chemistry , stereochemistry , crystallography , polymer chemistry , organic chemistry , molecule , ion
The synthesis and structural properties of three novel imidates, 11,13‐bis‐(2‐amino‐ethylimino)‐1,10‐dioxa‐4,7‐dithiacyclotridecane ( 2 ), 11,13‐bis‐(3‐aminopropylimino)‐1,10‐dioxa‐4,7‐dithiacyclotridecane, ( 3 ) and 2,11‐dioxa‐5,8‐dithia‐13,16,19,22‐tetraazabicyclo[10.10.1]tricosa‐1(22),12‐diene, ( 4 ) have been described. These compounds were synthesized by treating 1,10‐dioxa‐4,7‐dithiacyclotridecane‐11,13‐diester ( 1 ) with the appropriate diamine under N 2 and their structures have been characterised by elemental analyses, 1 H‐ and 13 C‐nmr, ir, and mass spectral studies. Elemental analyses and spectroscopic data support the proposed imidate structures. In addition, total energy and heat of formation (Figure 2) calculated for imidates 2a‐4a and 2b‐4b by the semiempirical AM1 calculations have shown that imidates 2b‐4b having intramolecular hydrogen bonds are more stable (5‐10 kcal/mol) than compounds 2a‐4a .