Premium
Synthesis and analgesic‐antiinflammatory activities of ethyl 2‐[3‐(1‐phenoxy(methoxy)carbonyl‐4‐aryl‐(alkyl)‐1,4‐dihydropyridyl)]acetates
Author(s) -
Agudoawu Sammy A.,
Knaus Edward E.
Publication year - 2000
Publication title -
journal of heterocyclic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.321
H-Index - 59
eISSN - 1943-5193
pISSN - 0022-152X
DOI - 10.1002/jhet.5570370214
Subject(s) - chemistry , aryl , medicinal chemistry , pyridinium , substituent , nucleophile , iodide , ring (chemistry) , alkyl , organic chemistry , catalysis
Reaction of ethyl 2‐(3‐pyridyl)acetate 4a or ethyl 2‐methyl‐2‐(3‐pyridyl)acetate 4b , with phenyl chloroformate or methyl chloroform ate, afforded the intermediate pyridinium salt 5 which undergoes regioselective nucleophilic attack at C‐4 upon reaction with a Grignard reagent in the presence of a cuprous iodide catalyst at −23° to yield the corresponding ethyl 2‐[3‐(1‐phenoxy(methoxy)carbonyl‐4‐aryl(alkyl)‐1,4‐dihydropyridyl)]acetates 6a‐f in 64–96% chemical yield. No product arising from reaction of the ester substituent of the pyridinium salt 5 with the Grignard reagent was observed. The 1 H nmr spectra of 6a‐f exhibited dual resonances for the 1,4‐dihydropyridyl H‐2, H‐5 and H‐6 protons at 25° in deuteriochloroform. These dual resonaces were attributed to two different rotameric configurations resulting from restricted rotation about the nitrogen‐to‐carbonyl carbamate bond due to its double bond character. Compound 6 generally exhibited superior analgesic and antiinflammatory activities, compared to the reference drugs aspirin and ibuprofen, respectively. These structure‐activity correlations indicate the 1,4‐dihydropyridyl ring system present in 6 is a suitable bioisostere for the aryl (heteroaryl) ring present in aryl(heteroaryl)acetic acid non‐steroidal antiinflammatory drugs.