Premium
Synthesis of chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5 H ‐pyrano pyrimidin‐2,4‐diones using organic catalysts and their antimicrobial and anticancer activities
Author(s) -
Aremu Oluwole S.,
Singh Parvesh,
Singh Moganavelli,
Mocktar Chunderika,
Koorbanally Neil A.
Publication year - 2019
Publication title -
journal of heterocyclic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.321
H-Index - 59
eISSN - 1943-5193
pISSN - 0022-152X
DOI - 10.1002/jhet.3695
Subject(s) - chemistry , dabco , malononitrile , catalysis , nitro , aryl , barbituric acid , medicinal chemistry , derivative (finance) , antimicrobial , organic chemistry , alkyl , financial economics , economics
Chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5 H ‐pyrano pyrimidin‐2,4‐diones were produced by reacting malononitrile, barbituric acid, and aromatic aldehydes together with a DABCO catalyst in an aqueous one‐pot reaction. This is the first report of these compounds being synthesized with DABCO as a catalyst, which produced the compounds in yields in excess of 90%. The 2,4‐difluoro derivative ( 11 ) was novel. The structures of the synthesized compounds were elucidated by means of 1 H, 13 C, and 2D NMR spectroscopy. Compound 2 (2‐Cl derivative) had MBC values of <200μM against both Staphylococcus aureus and MRSA, and the 2‐nitro derivative 5 had an MBC of 191μM against the Gram–ve E scherichia coli . The synthesized compounds were also tested for their anticancer activity against a HeLa cell line, where all the compounds showed better activity (IC 50 values between 129μM and 340μM) than 5‐fluorouracil, a commonly known anticancer drug.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom