z-logo
Premium
Synthesis of Some 4‐Quinolinyl Pyridines and their Antimicrobial and Docking Studies
Author(s) -
Kumar Ramesh,
Khanna Radhika,
Kumar Parvin,
Kumar Vikas,
Kamboj Ramesh C.
Publication year - 2017
Publication title -
journal of heterocyclic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.321
H-Index - 59
eISSN - 1943-5193
pISSN - 0022-152X
DOI - 10.1002/jhet.2876
Subject(s) - chemistry , dhps , antimicrobial , docking (animal) , dna gyrase , escherichia coli , yield (engineering) , stereochemistry , combinatorial chemistry , organic chemistry , biochemistry , medicine , plasmodium falciparum , materials science , nursing , malaria , gene , metallurgy , immunology , biology
A series of some substituted diethyl 4‐(2‐chloroquinolin‐3‐yl)‐2,6‐dimethylpyridine‐3,5‐dicarboxylates has been synthesized from substituted diethyl4‐(2‐chloroquinolin‐3‐yl)‐1,4‐dihydro‐2,6‐dimethylpyridine‐3,5‐dicarboxylates (1,4‐DHPs) by treating the latter with SiO 2 –HNO 3 which proved to be a better oxidant in terms of product yield, reaction time, and cost. Further, these compounds were screened for their antimicrobial activity. All the diethyl 4‐(2‐chloroquinolin‐3‐yl)‐2,6‐dimethylpyridine‐3,5‐dicarboxylates exhibited more potent activities than the corresponding 1,4‐DHPs. Further, docking simulation of the most active and least active compounds 3e and 2e into Escherichia coli topoisomerase II DNA Gyrase B was also performed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom