z-logo
Premium
An algebraic characterization of planar graphs
Author(s) -
Archdeacon Dan,
Paul Bonnington C.,
Little Charles H. C.
Publication year - 1995
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190190209
Subject(s) - mathematics , planar graph , combinatorics , diagonal , modulo , vertex (graph theory) , vector space , planar , space (punctuation) , algebraic number , graph , cycle basis , discrete mathematics , pure mathematics , geometry , line graph , mathematical analysis , computer science , graph power , computer graphics (images) , operating system
A cycle in a graph is a set of edges that covers each vertex an even number of times. A cocycle is a collection of edges that intersects each cycle in an even number of edges. A bicycle is a collection of edges that is both a cycle and a cocycle. The cycles, cocycles, and bicycles each form a vector space over the integers modulo two when addition is defined as symmetric difference of sets. In this paper we examine the relationship between the left‐right paths in a planar graph and the cycle space, cocylce space, and bicycle space. We show that planar graphs are characterized by the existence of a diagonal—a double cover by tours that interacts with the cycle space, cocycle space, and bicycle space in a special manner. This generalizes a result of Rosenstiehl and Read that characterized those planar graphs with no nonempty bicycles. © 1995 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom