Premium
Locally semicomplete digraphs: A generalization of tournaments
Author(s) -
BangJensen Jørgen
Publication year - 1990
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190140310
Subject(s) - digraph , combinatorics , mathematics , vertex (graph theory) , class (philosophy) , generalization , arc (geometry) , hamiltonian path , discrete mathematics , directed graph , hamiltonian (control theory) , graph , computer science , mathematical optimization , artificial intelligence , mathematical analysis , geometry
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi‐complete digraphs is precisely the class of proper circular‐arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.