z-logo
Premium
The phase transition in the evolution of random digraphs
Author(s) -
Łuczak Tomasz
Publication year - 1990
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190140210
Subject(s) - combinatorics , digraph , mathematics , order (exchange) , phase transition , physics , condensed matter physics , finance , economics
Let \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm D}\limits^ \to $\end{document} ( n, M ) denote a digraph chosen at random from the family of all digraphs on n vertices with M arcs. We shall prove that if M / n ≤ c < 1 and ω( n ) → ∞, then with probability tending to 1 as n → ∞ all components of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm D}\limits^ \to $\end{document} ( n, M ) are smaller than ω( n ), whereas when M / n ≥ c > 1 the largest component of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm D}\limits^ \to $\end{document} ( n, M ) is of the order n with probability 1 ‐ o (1).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom