z-logo
Premium
On the domination of the products of graphs II: Trees
Author(s) -
Jacobson Michael S.,
Kinch Lael F.
Publication year - 1986
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190100112
Subject(s) - combinatorics , mathematics , vertex (graph theory) , conjecture , dominating set , domination analysis , graph , tree (set theory) , order (exchange) , discrete mathematics , finance , economics
For a graph G , a subset of vertices D is a dominating set if for each vertex X not in D , X is adjacent to at least one vertex of D. The domination number, γ( G ), is the order of the smallest such set. An outstanding conjecture in the theory of domination is for any two graph G and H ,\documentclass{article}\pagestyle{empty}\begin{document}$$ \gamma \left({{\rm G} \times {\rm H}} \right) \ge \gamma \left(G \right)\gamma \left(H \right) $$\end{document}One result presented in this paper settles this question in the case when at least one of G or H is a tree. We show that\documentclass{article}\pagestyle{empty}\begin{document}$$ \gamma \left({G \times T} \right) \ge \gamma \left(G \right)\gamma \left(T \right) $$\end{document}for all graphs G and any tree T. Furthermore, we supply a partial characterization for which pairs of trees, T 1 and T 2 , strict inequality occurs. We show\documentclass{article}\pagestyle{empty}\begin{document}$$ \gamma \left({T_1 \times T_1 } \right)\gamma \left({T_1 } \right)\gamma \left({T_2 } \right) $$\end{document}for almost all pairs of trees.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here