z-logo
Premium
The crossing number of K 1,3, n and K 2,3, n
Author(s) -
Asano Kouhei
Publication year - 1986
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190100102
Subject(s) - mathematics , combinatorics , bipartite graph , crossing number (knot theory) , discrete mathematics , complete bipartite graph , graph , intersection (aeronautics) , engineering , aerospace engineering
In this article, we will determine the crossing number of the complete tripartite graphs K 1,3, n and K 2,3, n . Our proof depends on Kleitman's results for the complete bipartite graphs [D. J. Kleitman, The crossing number of K 5, n . J. Combinatorial Theory 9 (1970) 315‐323].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here