z-logo
Premium
On superperfect noncomparability graphs
Author(s) -
Andreae Thomas
Publication year - 1985
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190090413
Subject(s) - combinatorics , mathematics , comparability , cograph , chordal graph , discrete mathematics , indifference graph , pathwidth , strong perfect graph theorem , graph , 1 planar graph , line graph
The class of superperfect graphs, which was previously studied by A. J. Hoffman, E. L. Johnson, and M. C. Golumbic, is a proper subclass of the class of perfect graphs; further, it properly contains the class of comparability graphs. In his book, Golumbic proves that, for split graphs, G is a comparability graph if and only if G is superperfect. Moreover, the fact that split graphs are exactly those graphs which are both triangulated and cotriangulated motivated Golumbic to ask if it is true or false that, for triangulated (or cotriangulated) graphs, G is a comparability graph if and only if G is superperfect. In the present paper, we determine those members of Gallai's list of minimal noncomparability graphs which are superperfect and, as a consequence, we find that the answer to the above question is “false” for triangulated and “true” for cotriangulated graphs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here