Premium
A counterexample to a conjecture on paths of bounded length
Author(s) -
Boyles Stephanie M.,
Exoo Geoffrey
Publication year - 1982
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190060215
Subject(s) - counterexample , conjecture , bounded function , mathematics , combinatorics , discrete mathematics , mathematical analysis
In a recent paper Lovász, Neumann‐Lara, and Plummer studied Mengerian theorems for paths of bounded length. Their study led to a conjecture concerning the extent to which Menger's theorem can fail when restricted to paths of bounded length. In this paper we offer counterexamples to this conjecture.