Premium
On digraphs without antidirected cycles
Author(s) -
Grant Douglas D.,
Jaeger F.,
Payan C.
Publication year - 1982
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.3190060207
Subject(s) - combinatorics , mathematics , digraph , discrete mathematics
Let t ( n ) denote the greatest number of arcs in a diagraph of orders n which does not contain any antidrected cycles. We show that [16/5( n − 1)] ≤ t ( n ) ≤ 1/2 ( n − 1) for n ≥ 5. Let t r ( n ) denote the corresponding quantity for r ‐colorable digraphs. We show that [16/5( n − 1)] ≤ t 5 ( n ) ≤ t 6 ( n ) ≤ 10/3( n − 1) for n ≥ 5 and that t 4 ( n ) = 3( n − 1) for n ≥ 3.