z-logo
Premium
Counting paths, cycles, and blow‐ups in planar graphs
Author(s) -
Cox Christopher,
Martin Ryan R.
Publication year - 2022
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.22838
Subject(s) - combinatorics , planar graph , mathematics , subdivision , vertex (graph theory) , planar , 1 planar graph , pathwidth , outerplanar graph , graph , chordal graph , discrete mathematics , indifference graph , line graph , computer science , computer graphics (images) , archaeology , history
For a planar graphH $H$ , letN P ( n , H )${{\bf{N}}}_{{\mathscr{P}}}(n,H)$ denote the maximum number of copies ofH $H$ in ann $n$ ‐vertex planar graph. In this paper, we prove thatN P ( n , P 7 ) ~ 4 27 n 4${{\bf{N}}}_{{\mathscr{P}}}(n,{P}_{7})\unicode{x0007E}\frac{4}{27}{n}^{4}$ ,N P ( n , C 6 ) ~ ( n ∕ 3 ) 3${{\bf{N}}}_{{\mathscr{P}}}(n,{C}_{6})\unicode{x0007E}{(n\unicode{x02215}3)}^{3}$ ,N P ( n , C 8 ) ~ ( n ∕ 4 ) 4${{\bf{N}}}_{{\mathscr{P}}}(n,{C}_{8})\unicode{x0007E}{(n\unicode{x02215}4)}^{4}$ , andN P ( n , K 4 { 1 } )~( n ∕ 6 ) 6${{\bf{N}}}_{{\mathscr{P}}}(n,{K}_{4}\{1\})\,\unicode{x0007E}\,{(n\unicode{x02215}6)}^{6}$ , whereK 4 { 1 }${K}_{4}\{1\}$ is the 1‐subdivision ofK 4${K}_{4}$ . In addition, we obtain significantly improved upper bounds onN P ( n , P 2 m + 1)${{\bf{N}}}_{{\mathscr{P}}}(n,{P}_{2m+1})$ andN P ( n , C 2 m)${{\bf{N}}}_{{\mathscr{P}}}(n,{C}_{2m})$ form ≥ 4 $m\ge 4$ . For a wide class of graphsH $H$ , the key technique developed in this paper allows us to boundN P ( n , H )${{\bf{N}}}_{{\mathscr{P}}}(n,H)$ in terms of an optimization problem over weighted graphs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom