z-logo
Premium
Cycle decompositions of pathwidth‐6 graphs
Author(s) -
Fuchs Elke,
Gellert Laura,
Heinrich Irene
Publication year - 2020
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.22516
Subject(s) - conjecture , mathematics , combinatorics , counterexample , eulerian path , pathwidth , discrete mathematics , graph , line graph , pure mathematics , lagrangian
Hajós' conjecture asserts that a simple Eulerian graph on n vertices can be decomposed into at most ⌊ ( n − 1 ) / 2 ⌋ cycles. The conjecture is only proved for graph classes in which every element contains vertices of degree 2 or 4. We develop new techniques to construct cycle decompositions. They work on the common neighborhood of two degree‐6 vertices. With these techniques, we find structures that cannot occur in a minimal counterexample to Hajós' conjecture and verify the conjecture for Eulerian graphs of pathwidth at most 6. This implies that these graphs satisfy the small cycle double cover conjecture .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom