z-logo
Premium
Edge Kempe equivalence of regular graph covers
Author(s) -
Lazarovich Nir,
Levit Arie
Publication year - 2020
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.22500
Subject(s) - mathematics , combinatorics , edge coloring , graph , bounded function , discrete mathematics , graph coloring , enhanced data rates for gsm evolution , line graph , graph power , computer science , mathematical analysis , telecommunications
Let G be a finite d ‐regular graph with a proper edge coloring. An edge Kempe switch is a new proper edge coloring of G obtained by switching the two colors along some bichromatic cycle. We prove that any other edge coloring can be obtained by performing finitely many edge Kempe switches, provided that G is replaced with a suitable finite covering graph. The required covering degree is bounded above by a constant depending only on d .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom