Premium
The first gap for total curvatures of planar graphs with nonnegative curvature
Author(s) -
Hua Bobo,
Su Yanhui
Publication year - 2020
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.22493
Subject(s) - mathematics , combinatorics , planar graph , planar , curvature , graph , outerplanar graph , metric (unit) , discrete mathematics , geometry , pathwidth , line graph , computer science , operations management , computer graphics (images) , economics
We prove that the total curvature of a planar graph with nonnegative combinatorial curvature is at least 1/12 if it is positive. Moreover, we classify the metric structures of ambient polygonal surfaces for planar graphs attaining this bound.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom