z-logo
Premium
Tiling 3‐Uniform Hypergraphs With K 4 3 − 2 e
Author(s) -
Czygrinow Andrzej,
DeBiasio Louis,
Nagle Brendan
Publication year - 2014
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.21726
Subject(s) - mathematics , combinatorics , hypergraph , disjoint sets , integer (computer science) , vertex (graph theory) , order (exchange) , discrete mathematics , graph , finance , computer science , economics , programming language
LetK 4 3 − 2 e denote the hypergraph consisting of two triples on four points. For an integer n , let t ( n , K 4 3 − 2 e ) denote the smallest integer d so that every 3‐uniform hypergraph G of order n with minimum pair‐degreeδ 2 ( G ) ≥ d contains ⌊ n / 4 ⌋ vertex‐disjoint copies ofK 4 3 − 2 e . Kühn and Osthus (J Combin Theory, Ser B 96(6) (2006), 767–821) proved that t ( n , K 4 3 − 2 e ) = n 4 ( 1 + o ( 1 ) )holds for large integers n . Here, we prove the exact counterpart, that for all sufficiently large integers n divisible by 4,A main ingredient in our proof is the recent “absorption technique” of Rödl, Ruciński, and Szemerédi (J. Combin. Theory Ser. A 116(3) (2009), 613–636).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom