z-logo
Premium
A multipartite Ramsey number for odd cycles
Author(s) -
Benevides Fabrıcio Siqueira
Publication year - 2012
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20647
Subject(s) - multipartite , mathematics , combinatorics , conjecture , ramsey's theorem , graph , monochromatic color , discrete mathematics , integer (computer science) , quantum , computer science , physics , quantum mechanics , quantum entanglement , optics , programming language
In this article we study multipartite Ramsey numbers for odd cycles. Our main result is the proof that a conjecture of Gyárfás et al. (J Graph Theory 61 (2009), 12–21), holds for graphs with a large enough number of vertices. Precisely, there exists n 0 such that if n ⩾ n 0 is a positive odd integer then any two‐coloring of the edges of the complete five‐partite graph K ( n − 1)/2, ( n − 1)/2, ( n − 1)/2, ( n − 1)/2, 1 contains a monochromatic cycle of length n . © 2011 Wiley Periodicals, Inc. J Graph Theory

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom