z-logo
Premium
Gallai colorings and domination in multipartite digraphs
Author(s) -
Gyárfás András,
Simonyi Gábor,
Tóth Ágnes
Publication year - 2012
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20646
Subject(s) - combinatorics , multipartite , mathematics , digraph , vertex (graph theory) , dominating set , independent set , graph , cardinality (data modeling) , discrete mathematics , computer science , physics , quantum mechanics , quantum entanglement , quantum , data mining
Assume that D is a digraph without cyclic triangles and its vertices are partitioned into classes A 1 , …, A t of independent vertices. A set is called a dominating set of size | S | if for any vertex there is a w ∈ U such that ( w, v )∈ E ( D ). Let β( D ) be the cardinality of the largest independent set of D whose vertices are from different partite classes of D . Our main result says that there exists a h = h (β( D )) such that D has a dominating set of size at most h . This result is applied to settle a problem related to generalized Gallai colorings, edge colorings of graphs without 3‐colored triangles. © 2011 Wiley Periodicals, Inc. J Graph Theory

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom