z-logo
Premium
High‐girth cubic graphs are homomorphic to the Clebsch graph
Author(s) -
DeVos Matt,
Šámal Robert
Publication year - 2011
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20580
Subject(s) - mathematics , combinatorics , cubic graph , foster graph , edge coloring , discrete mathematics , triangle free graph , symmetric graph , graph homomorphism , petersen graph , windmill graph , graph power , odd graph , graph , voltage graph , line graph , 1 planar graph
We give a (computer assisted) proof that the edges of every graph with maximum degree 3 and girth at least 17 may be 5‐colored (possibly improperly) so that the complement of each color class is bipartite. Equivalently, every such graph admits a homomorphism to the Clebsch graph (Fig. 1). Hopkins and Staton [J Graph Theory 6(2) (1982), 115–121] and Bondy and Locke [J Graph Theory 10(4) (1986), 477–504] proved that every (sub)cubic graph of girth at least 4 has an edge‐cut containing at least of the edges. The existence of such an edge‐cut follows immediately from the existence of a 5‐edge‐coloring as described above; so our theorem may be viewed as a coloring extension of their result (under a stronger girth assumption). Every graph which has a homomorphism to a cycle of length five has an above‐described 5‐edge‐coloring; hence our theorem may also be viewed as a weak version of Nešetřil's Pentagon Problem (which asks whether every cubic graph of sufficiently high girth is homomorphic to C 5 ). Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 66: 241—259, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom