z-logo
Premium
Hamiltonian cycles in bipartite quadrangulations on the torus
Author(s) -
Nakamoto Atsuhiro,
Ozeki Kenta
Publication year - 2012
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20569
Subject(s) - torus , bipartite graph , mathematics , combinatorics , hamiltonian path , vertex (graph theory) , hamiltonian (control theory) , graph , discrete mathematics , geometry , mathematical optimization
In this article, we shall prove that every bipartite quadrangulation G on the torus admits a simple closed curve visiting each face and each vertex of G exactly once but crossing no edge. As an application, we conclude that the radial graph of any bipartite quadrangulation on the torus has a hamiltonian cycle. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69:143‐151, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom