z-logo
Premium
On hitting all maximum cliques with an independent set
Author(s) -
Rabern Landon
Publication year - 2011
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20487
Subject(s) - mathematics , combinatorics , counterexample , conjecture , cubic graph , graph , discrete mathematics , line graph , voltage graph
We prove that every graph G for which has an independent set I such that ω( G − I )<ω( G ). It follows that a minimum counterexample G to Reed's conjecture satisfies and hence also . This also applies to restrictions of Reed's conjecture to hereditary graph classes, and in particular generalizes and simplifies King, Reed and Vetta's proof of Reed's conjecture for line graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 32–37, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom