z-logo
Premium
Balanced coloring of bipartite graphs
Author(s) -
Feige Uriel,
Kogan Shimon
Publication year - 2010
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20456
Subject(s) - bipartite graph , combinatorics , mathematics , graph , degree (music) , complete bipartite graph , list coloring , independent set , discrete mathematics , graph power , physics , line graph , acoustics
Given a bipartite graph G ( U ∪ V, E ) with n vertices on each side, an independent set I ∈ G such that | U ∩ I |=| V ∩ I | is called a balanced bipartite independent set. A balanced coloring of G is a coloring of the vertices of G such that each color class induces a balanced bipartite independent set in G . If graph G has a balanced coloring we call it colorable . The coloring number χ B ( G ) is the minimum number of colors in a balanced coloring of a colorable graph G . We shall give bounds on χ B ( G ) in terms of the average degree \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}$\bar{d}$\end{document} of G and in terms of the maximum degree Δ of G . In particular we prove the following:\documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}$\chi_{{{B}}}({{G}}) \leq {{max}} \{{{2}},\lfloor {{2}}\overline{{{d}}}\rfloor+{{1}}\}$\end{document} . For any 0<ε<1 there is a constant Δ 0 such that the following holds. Let G be a balanced bipartite graph with maximum degree Δ≥Δ 0 and n ≥(1+ε)2Δ vertices on each side, then \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}$\chi_{{{B}}}({{G}})\leq \frac{{{{20}}}}{\epsilon^{{{2}}}} \frac{\Delta}{{{{ln}}}\,\Delta}$.\end{document}© 2009 Wiley Periodicals, Inc. J Graph Theory 64: 277–291, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom