z-logo
Premium
Forbidden subgraphs and the existence of a 2‐factor
Author(s) -
Aldred R. E. L.,
Fujisawa Jun,
Saito Akira
Publication year - 2010
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20454
Subject(s) - combinatorics , graph , physics , mathematics
In this paper, we consider forbidden subgraphs which force the existence of a 2‐factor. Let \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}$\end{document} be the class of connected graphs of minimum degree at least two and maximum degree at least three, and let \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${{\cal F}_2}$\end{document} be the class of graphs which have a 2‐factor. For a set \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} of connected graphs of order at least three, a graph G is said to be \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} ‐free if no member of \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} is an induced subgraph of G , and let \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}({\cal H})$\end{document} denote the class of graphs in \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}$\end{document} that are \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} ‐free. We are interested in sets \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} such that \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}({\cal H})$\end{document} is an infinite class while \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}({\cal H})-{\cal F}_2$\end{document} is a finite class. In particular, we investigate whether \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} must contain a star (i.e. K 1, n for some positive integer n ). We prove the following: (1) If | \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} |=1, then \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} ={ K 1, 2 }. (2) If | \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} |=2, then \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} contains K 1, 2 or K 1, 3 . (3) If | \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} |=3, then \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} contains a star. But no restriction is imposed on the order of the star. (4) Not all of \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} with | \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} |=4 contain a star. For | \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} |⩽2, we compare our results with a recent result by Faudree et al. (Discrete Math 308 (2008), 1571–1582), and report a difference in the conclusion when connected graphs are considered as opposed to 2‐connected graphs. We also observe a phenomenon in which \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} does not contain a star but \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}$\end{document} ( \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal H}$\end{document} )− \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\cal G}$\end{document} ({ K 1, t }) is finite for some t ⩾3. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 250–266, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom