z-logo
Premium
C‐perfect hypergraphs
Author(s) -
Bujtás Csilla,
Tuza Zsolt
Publication year - 2010
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20444
Subject(s) - combinatorics , physics , hypergraph , vertex (graph theory) , mathematics , graph
Let \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{H}}=({{X}},{\mathcal{E}})$\end{document} be a hypergraph with vertex set X and edge set \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{E}}$\end{document} . A C‐coloring of \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{H}}$\end{document} is a mapping ϕ : X →ℕ such that | ϕ ( E )|<| E | holds for all edges \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${{E}}\in{\mathcal{E}}$\end{document} (i.e. no edge is multicolored). We denote by \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}$\bar{\chi}({\mathcal{H}})$\end{document} the maximum number | ϕ ( X )| of colors in a C‐coloring. Let further \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}$\alpha({\mathcal{H}})$\end{document} denote the largest cardinality of a vertex set S ⊆ X that contains no \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${{E}}\in{\mathcal{E}}$\end{document} , and \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}$\tau({\mathcal{H}})=|{{X}}|-\alpha({\mathcal{H}})$\end{document} the minimum cardinality of a vertex set meeting all \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $E \in {\mathcal{E}}$\end{document} . The hypergraph \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} ${\mathcal{H}}$\end{document} is called C‐perfect if \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $\bar{\chi}({\mathcal{H}}\prime)=\alpha({\mathcal{H}}\prime)$\end{document} holds for every induced subhypergraph \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{H}}\prime\subseteq{\mathcal{H}}$\end{document} . If \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{H}}$\end{document} is not C‐perfect but all of its proper induced subhypergraphs are, then we say that it is minimally C‐imperfect. We prove that for all r, k ∈ℕ there exists a finite upper bound h ( r, k ) on the number of minimally C‐imperfect hypergraphs \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{H}}$\end{document} with \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}$\tau({\mathcal{H}})\le {{k}}$\end{document} and without edges of more than r vertices. We give a characterization of minimally C‐imperfect hypergraphs that have τ=2, which also characterizes implicitly the C‐perfect ones with τ=2. From this result we derive an infinite family of new constructions that are minimally C‐imperfect. A characterization of minimally C‐imperfect circular hypergraphs is presented, too. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 132–149, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom