z-logo
Premium
Balloons, cut‐edges, matchings, and total domination in regular graphs of odd degree
Author(s) -
O Suil,
West Douglas B.
Publication year - 2010
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20443
Subject(s) - combinatorics , mathematics , graph , vertex (graph theory) , degree (music) , upper and lower bounds , physics , mathematical analysis , acoustics
A balloon in a graph G is a maximal 2‐edge‐connected subgraph incident to exactly one cut‐edge of G . Let b ( G ) be the number of balloons, let c ( G ) be the number of cut‐edges, and let α′( G ) be the maximum size of a matching. Let \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}${\mathcal{F}}_{{{n}},{{r}}}$\end{document} be the family of connected (2 r +1)‐regular graphs with n vertices, and let \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}${{b}}={{max}}\{{{b}}({{G}}): {{G}}\in {\mathcal{F}}_{{{n}},{{r}}}\}$\end{document} . For \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}${{G}}\in{\mathcal{F}}_{{{n}},{{r}}}$\end{document} , we prove the sharp inequalities c ( G )⩽[ r ( n −2)−2]/(2 r 2 +2 r −1)−1 and α′( G )⩾ n /2− rb/ (2 r +1). Using b ⩽[(2 r −1) n +2]/(4 r 2 +4 r −2), we obtain a simple proof of the bound\documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}\begin{eqnarray*}\alpha\prime(G)\ge\frac{n}{2}-\frac{r}{2}\frac{(2r-1)n+2}{(2r+1)(2r^2+2r-1)}\end{eqnarray*}\end{document} proved by Henning and Yeo. For each of these bounds and each r , the approach using balloons allows us to determine the infinite family where equality holds. For the total domination number γ t ( G ) of a cubic graph, we prove γ t ( G )⩽ n /2− b ( G )/2 (except that γ t ( G ) may be n /2−1 when b ( G )=3 and the balloons cover all but one vertex). With α′( G )⩾ n /2− b ( G )/3 for cubic graphs, this improves the known inequality γ t ( G )⩽α′( G ). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 116–131, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom