z-logo
Premium
Monochromatic Hamiltonian 3‐tight Berge cycles in 2‐colored 4‐uniform hypergraphs
Author(s) -
Gyárfás András,
Sárközy Gábor N.,
Szemerédi Endre
Publication year - 2010
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20427
Subject(s) - monochromatic color , mathematics , combinatorics , conjecture , hamiltonian (control theory) , hamiltonian path , colored , graph , ramsey theory , discrete mathematics , physics , law , mathematical optimization , political science , optics
Here improving on our earlier results, we prove that there exists an n 0 such that for n ⩾ n 0 in every 2‐coloring of the edges of K   (4) nthere is a monochromatic Hamiltonian 3‐tight Berge cycle. This proves the c =2, t =3, r =4 special case of a conjecture from (P. Dorbec, S. Gravier, and G. N. Sárközy, J Graph Theory 59 (2008), 34–44). © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 288–299, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom