z-logo
Premium
Stability for large forbidden subgraphs
Author(s) -
Nikiforov Vladimir
Publication year - 2009
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20399
Subject(s) - combinatorics , mathematics , graph , order (exchange) , spectral radius , physics , eigenvalues and eigenvectors , quantum mechanics , finance , economics
In this note we strengthen the stability theorem of Erdős and Simonovits. Write K r ( s 1 , …, s r ) for the complete r ‐partite graph with classes of sizes s 1 , …, s r and T r ( n ) for the r ‐partite Turán graph of order n . Our main result is: For all r ≥2 and all sufficiently small c >0, ε>0, every graph G of sufficiently large order n with e ( G )>(1−1/ r −ε) n 2 /2 satisfies one of the conditions: (a) G contains a \documentclass{article} \usepackage{amssymb}\footskip=0pc\pagestyle{empty} \begin{document} $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)$ \end{document} ; (b) G differs from T r ( n ) in fewer than (ε 1/3 + c 1/(3 r +3) ) n 2 edges.Letting µ( G ) be the spectral radius of G , we prove also a spectral stability theorem: For all r ≥2 and all sufficiently small c >0, ε>0, every graph G of sufficiently large order n with µ( G )>(1−1/ r −ε) n satisfies one of the conditions: (a) G contains a \documentclass{article} \usepackage{amssymb}\footskip=0pc\pagestyle{empty} \begin{document} $K_{r+1}(\lfloor c\,\mbox{ln}\,n\rfloor,\ldots,\lfloor c\,\mbox{ln}\,n\rfloor,\lceil n^{1-\sqrt{c}}\rceil)$ \end{document} ; (b) G differs from T r ( n ) in fewer than (ε 1/4 + c 1/(8r+8) ) n 2 edges. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 362–368, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom