z-logo
Premium
Fair reception and Vizing's conjecture
Author(s) -
Brešar Boštjan,
Rall Douglas F.
Publication year - 2009
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20366
Subject(s) - conjecture , mathematics , combinatorics , cartesian product , domination analysis , graph , discrete mathematics , chordal graph , vertex (graph theory)
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ( G ) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom