z-logo
Premium
Disjoint quasi‐kernels in digraphs
Author(s) -
Heard Scott,
Huang Jing
Publication year - 2008
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20310
Subject(s) - digraph , combinatorics , disjoint sets , mathematics , vertex (graph theory) , transitive relation , multipartite , discrete mathematics , kernel (algebra) , graph , physics , quantum mechanics , quantum entanglement , quantum
A quasi‐kernel in a digraph is an independent set of vertices such that any vertex in the digraph can reach some vertex in the set via a directed path of length at most two. Chvátal and Lovász proved that every digraph has a quasi‐kernel. Recently, Gutin et al. raised the question of which digraphs have a pair of disjoint quasi‐kernels. Clearly, a digraph has a pair of disjoint quasi‐kernels cannot contain sinks , that is, vertices of outdegree zero, as each such vertex is necessarily included in a quasi‐kernel. However, there exist digraphs which contain neither sinks nor a pair of disjoint quasi‐kernels. Thus, containing no sinks is not sufficient in general for a digraph to have a pair of disjoint quasi‐kernels. In contrast, we prove that, for several classes of digraphs, the condition of containing no sinks guarantees the existence of a pair of disjoint quasi‐kernels. The classes contain semicomplete multipartite, quasi‐transitive, and locally semicomplete digraphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:251‐260, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom