z-logo
Premium
Pathwidth of outerplanar graphs
Author(s) -
Coudert David,
Huc Florian,
Sereni JeanSébastien
Publication year - 2007
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20218
Subject(s) - pathwidth , mathematics , combinatorics , outerplanar graph , discrete mathematics , graph , line graph
We are interested in the relation between the pathwidth of a biconnected outerplanar graph and the pathwidth of its (geometric) dual. Bodlaender and Fomin [3], after having proved that the pathwidth of every biconnected outerplanar graph is always at most twice the pathwidth of its (geometric) dual plus two, conjectured that there exists a constant c such that the pathwidth of every biconnected outerplanar graph is at most c plus the pathwidth of its dual. They also conjectured that this was actually true with c being one for every biconnected planar graph. Fomin [10] proved that the second conjecture is true for all planar triangulations. First, we construct for each p  ≥ 1, a biconnected outerplanar graph of pathwidth 2 p  + 1 whose (geometric) dual has pathwidth p  + 1, thereby disproving both conjectures. Next, we also disprove two other conjectures (one of Bodlaender and Fomin [3], implied by one of Fomin [10]. Finally we prove, in an algorithmic way, that the pathwidth of every biconnected outerplanar graph is at most twice the pathwidth of its (geometric) dual minus one. A tight interval for the studied relation is therefore obtained, and we show that all cases in the interval happen. © 2006 Wiley Periodicals, Inc. J Graph Theory 55: 27–41, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom