Premium
Pathwidth of outerplanar graphs
Author(s) -
Coudert David,
Huc Florian,
Sereni JeanSébastien
Publication year - 2007
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20218
Subject(s) - pathwidth , mathematics , combinatorics , outerplanar graph , discrete mathematics , graph , line graph
We are interested in the relation between the pathwidth of a biconnected outerplanar graph and the pathwidth of its (geometric) dual. Bodlaender and Fomin [3], after having proved that the pathwidth of every biconnected outerplanar graph is always at most twice the pathwidth of its (geometric) dual plus two, conjectured that there exists a constant c such that the pathwidth of every biconnected outerplanar graph is at most c plus the pathwidth of its dual. They also conjectured that this was actually true with c being one for every biconnected planar graph. Fomin [10] proved that the second conjecture is true for all planar triangulations. First, we construct for each p ≥ 1, a biconnected outerplanar graph of pathwidth 2 p + 1 whose (geometric) dual has pathwidth p + 1, thereby disproving both conjectures. Next, we also disprove two other conjectures (one of Bodlaender and Fomin [3], implied by one of Fomin [10]. Finally we prove, in an algorithmic way, that the pathwidth of every biconnected outerplanar graph is at most twice the pathwidth of its (geometric) dual minus one. A tight interval for the studied relation is therefore obtained, and we show that all cases in the interval happen. © 2006 Wiley Periodicals, Inc. J Graph Theory 55: 27–41, 2007