z-logo
Premium
Heavy cycles passing through some specified vertices in weighted graphs
Author(s) -
Fujisawa Jun,
Yoshimoto Kiyoshi,
Zhang Shenggui
Publication year - 2005
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.20066
Subject(s) - combinatorics , mathematics , hamiltonian path , wheel graph , vertex (graph theory) , graph , discrete mathematics , graph power , line graph
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e . The sum of the weights of the edges incident with a vertex υ is called the weighted degree of υ. The weight of a cycle is defined as the sum of the weights of its edges. In this paper, we prove that: (1) if G is a 2‐connected weighted graph such that the minimum weighted degree of G is at least d , then for every given vertices x and y , either G contains a cycle of weight at least 2 d passing through both of x and y or every heaviest cycle in G is a hamiltonian cycle, and (2) if G is a 2‐connected weighted graph such that the weighted degree sum of every pair of nonadjacent vertices is at least s , then for every vertex y , G contains either a cycle of weight at least s passing through y or a hamiltonian cycle. AMS classification: 05C45 05C38 05C35. © 2005 Wiley Periodicals, Inc. J Graph Theory

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom