z-logo
Premium
A Steiner triple system which colors all cubic graphs
Author(s) -
Grannell Mike,
Griggs Terry,
Knor Martin,
Škoviera Martin
Publication year - 2004
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.10166
Subject(s) - combinatorics , cubic graph , mathematics , vertex (graph theory) , graph , steiner system , edge coloring , discrete mathematics , order (exchange) , line graph , graph power , voltage graph , finance , economics
We prove that there is a Steiner triple system such that every simple cubic graph can have its edges colored by points of in such a way that for each vertex the colors of the three incident edges form a triple in . This result complements the result of Holroyd and Škoviera that every bridgeless cubic graph admits a similar coloring by any Steiner triple system of order greater than 3. The Steiner triple system employed in our proof has order 381 and is probably not the smallest possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 15–24, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom