z-logo
Premium
3‐colorability of 4‐regular hamiltonian graphs
Author(s) -
Fleischner Herbert,
Sabidussi Gert
Publication year - 2003
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.10079
Subject(s) - mathematics , combinatorics , hamiltonian path , hamiltonian (control theory) , pancyclic graph , discrete mathematics , graph , 1 planar graph , chordal graph , mathematical optimization
On the model of the cycle‐plus‐triangles theorem, we consider the problem of 3‐colorability of those 4‐regular hamiltonian graphs for which the components of the edge‐complement of a given hamiltonian cycle are non‐selfcrossing cycles of constant length ≥ 4. We show that this problem is NP‐complete. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 125–140, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom