z-logo
Premium
Total relative displacement of vertex permutations of K   n   1 , n   2 , …, n   t
Author(s) -
Reid K. B.
Publication year - 2002
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.10078
Subject(s) - combinatorics , mathematics , vertex (graph theory) , automorphism , permutation (music) , integer (computer science) , graph , discrete mathematics , physics , computer science , acoustics , programming language
Let α denote a permutation of the n vertices of a connected graph G . Define δ α ( G ) to be the number $\sum |d(x,y)-d(\alpha (x),\alpha(y))|$ , where the sum is over all the $\left({n \atop 2} \right)$ unordered pairs of distinct vertices of G . The number δ α ( G ) is called the total relative displacement of α (in G ). So, permutation α is an automorphism of G if and only if δ α ( G ) = 0. Let π( G ) denote the smallest positive value of δ α ( G ) among the n ! permutations α of the vertices of G . A permutation α for which π( G ) = δ α ( G ) has been called a near‐automorphism of G [2]. We determine π( K   n   1 , n   2 ,…, n   t) and describe permutations α of K   n   1 , n   2 ,…, n   tfor which π( K   n   1 , n   2 ,…, n   t) = δ α ( K   n   1 , n   2 ,…, n   t). This is done by transforming the problem into the combinatorial optimization problem of maximizing the sums of the squares of the entries in certain t by t matrices with non–negative integer entries in which the sum of the entries in the i th row and the sum of the entries in the i th column each equal to n i ,1≤ i ≤ t . We prove that for positive integers, n 1 ≤ n 2 ≤…≤ n t , where t ≥2 and n t ≥2,$\pi {(K_{n_1 ,{n}_2 , \ldots ,{n}_t} }) = \left \{\matrix{2{ n}_{ h + 1} - 2\hfill \quad\quad{\rm if} \,\,\, 1 = { n}_1 = { n}_2 = \cdots = {n_h} < { n}_{{ h} + 1}\hfill \cr \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\le \cdots \le { n}_{t} , {\rm and}\ {t}\ge(h + 1),\hfill\cr \quad\quad\quad\quad\quad\quad{\rm for\ some} \ { h}\ge 2,\hfil \cr 2{ n}_{{ k}_0}\hfill \quad\quad\quad\quad\quad\quad\quad{\rm if} \,\,\, 1 = {n_1} < { n}_2\ {\rm or}\ { n}_1 \ge 2, {n}_{{ k} + 1} = {n}_{ k} + 1,\hfill \cr \;\quad\quad\quad\quad\quad{\rm\ for\ some}\ k, 1\le { k} \le { t} - 1,\ \cr \;\quad\quad\quad\quad{\rm and}\ 2+ { n}_{{ k}_0 } \le { n}_1 + { n}_2 , \cr 2({ n}_1 + { n}_2 - 2)\hfill {\rm otherwise},\hfill\hfill\hfill\hfill\hfill\cr } \right.$where k 0 is the smallest index for which n   k   0 +1  =  n   k   0+1. As a special case, we correct the value of π( K m , n ), for all m and n at least 2, given by Chartrand, Gavlas, and VanderJagt [2]. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 85–100, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom