z-logo
Premium
On splittable colorings of graphs and hypergraphs
Author(s) -
Füredi Zoltán,
Ramamurthi Radhika
Publication year - 2002
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.10044
Subject(s) - mathematics , combinatorics , greedy coloring , graph coloring , generalization , ramsey theory , discrete mathematics , list coloring , graph , edge coloring , line graph , graph power , mathematical analysis
The notion of a split coloring of a complete graph was introduced by Erdős and Gyárfás [7] as a generalization of split graphs. In this work, we offer an alternate interpretation by comparing such a coloring to the classical Ramsey coloring problem via a two‐round game played against an adversary. We show that the techniques used and bounds obtained on the extremal ( r , m )‐split coloring problem of [7] are closer in nature to the Turán theory of graphs rather than Ramsey theory. We extend the notion of these colorings to hypergraphs and provide bounds and some exact results. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 226–237, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom