z-logo
Premium
Combinatorial curvature for planar graphs
Author(s) -
Higuchi Yusuke
Publication year - 2001
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.10004
Subject(s) - mathematics , sectional curvature , curvature , combinatorics , scalar curvature , constant curvature , ricci curvature , planar graph , graph , planar , negative curvature , bounded function , discrete mathematics , pure mathematics , geometry , mathematical analysis , computer science , computer graphics (images)
Regarding an infinite planar graph G as a discrete analogue of a noncompact simply connected Riemannian surface, we introduce the combinatorial curvature of G corresponding to the sectional curvature of a manifold. We show this curvature has the property that its negative values are bounded above by a universal negative constant. We also prove that G is hyperbolic if its curvature is negative. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 220–229, 2001

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom