Premium
A climatology of polar winter stratopause warmings and associated planetary wave breaking
Author(s) -
Greer K.,
Thayer J. P.,
Harvey V. L.
Publication year - 2013
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/jgrd.50289
Subject(s) - stratopause , polar night , polar , climatology , atmospheric sciences , environmental science , meteorology , geology , geography , physics , astronomy , stratosphere , mesosphere
Abstract This work presents a climatology of synoptic‐scale disturbances in the upper stratosphere lower mesosphere (USLM) based on 20.5 years of assimilated data analyses from the U. K. Meteorological Office (1991–2012). USLM disturbance criteria are established, based on stratopause warmings at the 2 hPa level, to create climatologies in both hemispheres that delineate their timing, frequency, and geographic location. USLM disturbances occur on average 2.3 times per winter in the Northern Hemisphere (NH) (November through March) and 1.6 times per winter in the Southern Hemisphere (SH) (May through September), persist on average for 8 days in the NH and only 4 days in the SH, occur most frequently in December (July) in the Northern (Southern) Hemisphere, and are predominantly located in the longitude sector between 0 o E and 90 o E in both hemispheres. This is the first work to show that all major Sudden Stratospheric Warmings (SSWs) over the 20.5 year data record are preceded by USLM disturbances. One third of USLM disturbances evolve into a major SSW; only 22% of minor SSWs evolve into a major SSW. USLM disturbances and minor SSWs illustrate, at times, similar occurrence statistics, but the minor warming criteria seem to include a more diverse range of dynamical conditions. USLM disturbances are more specific in their dynamical construct with strong baroclinicity being a necessary condition. Potential vorticity analysis indicates that all USLM events occur with planetary wave breaking and that subsequent baroclinic instability may lead to the development of USLM disturbances.