z-logo
Premium
Retrieving Asian dust AOT and height from hyperspectral sounder measurements: An artificial neural network approach
Author(s) -
Han HyoJin,
Sohn B. J.
Publication year - 2013
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/jgrd.50170
Subject(s) - hyperspectral imaging , remote sensing , environmental science , atmospheric infrared sounder , satellite , lidar , aerosol , moderate resolution imaging spectroradiometer , mineral dust , meteorology , atmospheric sciences , water vapor , geology , physics , astronomy
In order to examine potential use of infrared (IR) hyperspectral measurements for dust monitoring, a statistical artificial neural network (ANN) approach was taken as an inverse method of retrieving pixel‐level aerosol optical thickness (AOT) and dust height ( z dust ). The ANN model was trained by relating Atmospheric Infrared Sounder (AIRS) brightness temperatures across 234 channels, surface elevation, and relative air mass to collocated AOT derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and z dust derived from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO) observations for Asian dust cases. Results showing correlation coefficients of 0.84 and 0.79, and mean biases of 0.03 and about −0.02 km for AOT and z dust , respectively, suggest that dust retrievals from hyperspectral IR sounder measurements are comparable to MODIS‐derived AOT and CALIPSO‐measured z dust . The pixel‐level retrievals of AOT and z dust during both day and night from IR hyperspectral measurements may offer great potential to improve our ability to monitor and forecast the evolving features of Asian dust.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here