z-logo
Premium
Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect
Author(s) -
Lin Yunung Nina,
Sladen Anthony,
OrtegaCulaciati Francisco,
Simons Mark,
Avouac JeanPhilippe,
Fielding Eric J.,
Brooks Benjamin A.,
Bevis Michael,
Genrich Jeff,
Rietbrock Andreas,
Vigny Christophe,
Smalley Robert,
Socquet Anne
Publication year - 2013
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/jgrb.50207
Subject(s) - geology , slip (aerodynamics) , seismology , subduction , peninsula , submarine pipeline , subsidence , forearc , geomorphology , oceanography , tectonics , geography , physics , archaeology , structural basin , thermodynamics
Abstract Observations of coseismic and postseismic deformation associated with the 2010 Mw  = 8.8 Maule earthquake in south‐central Chile provide constraints on the spatial heterogeneities of frictional properties on a major subduction megathrust and how they have influenced the seismic rupture and postseismic effects. We find that the bulk of coseismic slip occurs within a single elongated patch approximately 460 km long and 100 km wide between the depths of 15 and 40 km. We infer three major patches of afterslip: one extends northward along strike and downdip of the major coseismic patch between 40 and 60 km depth; the other two bound the northern and southern ends of the coseismic patch. The southern patch offshore of the Arauco Peninsula is the only place showing resolvable afterslip shallower than 20 km depth. Estimated slip potency associated with postseismic slip in the 1.3 years following the earthquake amounts to 20–30% of that generated coseismically. Our estimates of the megathrust frictional properties show that the Arauco Peninsula area has positive but relatively low ( a − b ) σ n values (0.01 ~ 0.22 MPa), that would have allowed dynamic rupture propagation into this rate‐strengthening area and afterslip. Given the only modestly rate‐strengthening megathrust friction in this region, the barrier effect may be attributed to its relatively large size of the rate‐strengthening patch. Coseismic and postseismic uplift of the Arauco Peninsula exceeds interseismic subsidence since the time of the last major earthquake in 1835, suggesting that coseismic and postseismic deformation has resulted in some permanent strain in the forearc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here