Premium
Correction to “Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California”
Author(s) -
Chen X.,
Shearer P.M.
Publication year - 2013
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/jgrb.50098
Subject(s) - induced seismicity , geothermal gradient , earthquake swarm , injection well , seismology , swarm behaviour , geology , geophysics , petroleum engineering , mathematics , mathematical optimization
[1] We study earthquakes within California’s Salton Trough from 1981 to 2009 from a precisely relocated catalog. We process the seismic waveforms to isolate source spectra, station spectra and travel‐time dependent spectra. The results suggest an average P wave Q of 340, agreeing with previous results indicating relatively high attenuation in the Salton Trough. Stress drops estimated from the source spectra using an empirical Green’s function (EGF) method reveal large scatter among individual events but a low median stress drop of 0.56 MPa for the region. The distribution of stress drop after applying a spatial‐median filter indicates lower stress drops near geothermal sites. We explore the relationships between seismicity, stress drops and geothermal injection activities. Seismicity within the Salton Trough shows strong spatial clustering, with 20 distinct earthquake swarms with at least 50 events. They can be separated into early‐Mmax and late‐Mmax groups based on the normalized occurrence time of their largest event. These swarms generally have a low skew value of moment release history, ranging from −9 to 3.0. The major temporal difference between the two groups is the excess of seismicity and an inverse power law increase of seismicity before the largest event for the late‐Mmax group. All swarms exhibit spatial migration of seismicity at a statistical significance greater than 85%. A weighted L1‐norm inversion of linear migration parameters yields migration velocities from 0.008 to 0.8 km/hour. To explore the influence of fluid injection in geothermal sites, we also model the migration behavior with the diffusion equation, and obtain a hydraulic diffusion coefficient of approximately 0.25 m/s for the Salton Sea geothermal site, which is within the range of expected values for a typical geothermal reservoir. The swarms with migration velocities over 0.1 km/hour cannot be explained by the diffusion curve, rather, their velocity is consistent with the propagation velocity of creep and slow slip events. These variations in migration behavior allow us to distinguish among different driving processes.