z-logo
Premium
Reactive transport at stressed grain contact and creep compaction of quartz sand
Author(s) -
He Wenwu,
Sparks David,
Hajash Andrew
Publication year - 2013
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/jgrb.50064
Subject(s) - compaction , creep , grain size , materials science , diffusion creep , dissolution , intergranular corrosion , diffusion , thermal diffusivity , supersaturation , grain boundary , mineralogy , composite material , thermodynamics , geology , chemical engineering , microstructure , physics , engineering
A kinetic model is developed to investigate intergranular pressure solution. This model couples stress‐induced dissolution at grain contacts, diffusion through grain boundaries, and precipitation in pore spaces. The rate‐controlling processes are evaluated according to the dimensionless concentrations at grain contacts and in the pore fluid. Constrained by the experimental results of creep compaction of quartz sands, calculations suggest that the equilibrium concentration at stressed grain contacts ( c eqb ) does not exceed 1 order of magnitude higher than the hydrostatic equilibrium concentration ( c eq ) at the initial stages of creep compaction. However, c eqb decays rapidly with increasing compaction and becomes close to c eq after several percent strain. The diffusivity at grain contacts is 1–2 orders of magnitude lower than the diffusivity in pore fluid. The rate‐controlling process is related to grain size and strain. An increase in grain size shifts the systems toward the diffusion‐controlled regime, while an increase in strain shifts the systems from dissolution‐controlled regime toward either diffusion‐controlled regime (larger grains) or precipitation‐controlled regime (smaller grains). Intergranular pressure solution appears to be very sensitive to pore‐fluid chemistry. Even a slight supersaturation in the pore fluid could prevent the diffusion along grain contacts. This may explain why the strength of intergranular pressure solution varies widely in natural sandstones.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here