z-logo
Premium
Investigation of polyethylenimine‐grafted‐triamcinolone acetonide as nucleus‐targeting gene delivery systems
Author(s) -
Ma Kun,
Hu Minxin,
Xie Meng,
Shen Haijun,
Qiu Liyan,
Fan Weimin,
Sun Hongying,
Chen Shuqing,
Jin Yi
Publication year - 2010
Publication title -
the journal of gene medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.689
H-Index - 91
eISSN - 1521-2254
pISSN - 1099-498X
DOI - 10.1002/jgm.1485
Subject(s) - polyethylenimine , transfection , gene delivery , chemistry , biophysics , in vivo , triamcinolone acetonide , cytotoxicity , transgene , in vitro , conjugated system , microbiology and biotechnology , biochemistry , biology , polymer , organic chemistry , gene , immunology
Background Nuclear membrane is one of the main barriers in polymer mediated intracellular gene delivery. To improve the transgenic activity and safety of nonviral vector, triamcinolone acetonide (TA) as a nuclear localization signal was conjugated with different molecular weight polyethylenimine (PEI). Methods Different molecular weight PEI [600, 1800, 25 000 (25k)] was conjugated with TA to synthesize PEI‐TA by two‐step reaction. Their physicochemical characteristics, in vitro cytotoxicity and transfection efficiency were evaluated. To investigate the difference of transfection efficiency of various molecular weight PEI‐TA, their transfection mechanism was further investigated by confocal microscopy and competition assay. Transgenic expression in vivo was evaluated by injection into hepatic portal vein of mice. Results All PEI‐TA could form nanosize polyplexes with DNA and their physicochemical properties resemble each other. Their cytotoxicities were negligible compared to PEI 25k. The order of transfection efficiency was PEI 1800‐TA > PEI 600‐TA > PEI 25k‐TA. A transfection mechanism study displayed that TA could inhibit considerably the transgenic activity of PEI 1800‐TA and PEI 600‐TA, but that of PEI 25k‐TA was not inhibited. It was suggested that PEI 1800‐TA and PEI 600‐TA might translocate into the nucleus. Confocal microscopy investigation verified this suggestion. The data strongly suggested that the transfection efficiency of PEI 1800‐TA in vivo was much higher than that of PEI 25k, which was consistent with the results obtained in vitro . Conclusions Low molecular weight PEI‐TA could translocate into the nucleus efficiently. PEI 1800‐TA presented higher transgenic activity and it has a great potential for gene therapy as a nonviral carrier. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here